
Annotation Instructions 1

🔬
Annotation Instructions

Motivation

What are we doing?
In this project we are attempting to create a new kind of dataset to improve
procedural text understanding algorithms. Procedural texts are natural
language texts describing step-by-step instructions or recipes. Specifically,
we'll focus on biology laboratory instructions, also called wet labs protocols.

Why are we doing it?
 Most existing datasets for procedural texts don't provide detailed enough

instructions/training environments such as required for an AI agent learning
to execute a procedure.

 To provide an easier interface between humans and instruction-following
AI agents. Instead of having to specify instructions in some machine
language code, the human operator could use something closer to natural
language.

Motivation
What are we doing?
Why are we doing it?
How are we doing it?

How To Annotate
Suggested Annotation Flow
Notes Important!

Reference
TextLabs Entity Set
Action Set

Description Actions
Operation Actions

Annotation Instructions 2

 A dataset like this would be a rich and unique source of training data from
the perspective of Natural Language Understanding NLU researchers -
long, real world texts grounded to machine readable formats are quite
rare.

How are we doing it?
Rather than building a 3D simulator of a laboratory to train agents, which
would involve a lot of engineering effort, we'll work with TextLabs, a simple
text-based simulator of a laboratory. This will let us focus purely on the
language aspect. TextLabs provides an environment and set of instructions
that can be used to interact with it. To further streamline the dataset
construction, we will use the existing Wet Labs Protocols WLP dataset, and
convert it to TextLabs format. WLP provides extensive annotations for 600
protocols. We'll start with a shorter and simpler subset of this dataset.

How To Annotate
The annotations provided in WLP are sentence-level semantic parses, also
known as action-graphs. Each parse is a graph over word spans (nodes) with
various relations between them.

Such graphs are not machine executable, so we will convert them into
executable instructions in the text-based simulator, as follows:

Each typed node in the WLP action graph is automatically converted to a
typed entity in the game. These are the entities you'll be able to interact with.

Relations in the graph correspond roughly to commands / instructions /
actions in the game.

There are 3 main entity types:

 Operation (corresponding to WLP Action).

 Object : (corresponding to WLP Object entities).

 Descriptor : (corresponding to WLP Measure-based and Parts-of-Speech
based entity types).

There are two main types of actions possible in TextLabs (roughly
corresponding to relations in WLP

Annotation Instructions 3

 Description Actions: connecting between Descriptor and Object, Operation
entities. These are "shallow" actions which do not affect game state,
beyond simple linkage of two entities.

 Operation Events (corresponding to WLP action relation): we allow typing
and execution of Operation entities, which can affect game state based on
their type and arguments. This comprises a key difference with WLP, where
actions are untyped (and non-executable of course). This is intended to
align with the notion of executable instructions corresponding with those
we may wish for an automated agent to perform.

If this sounds complicated, referring to the examples below can help clarify.

Suggested Annotation Flow
 For a given WLP protocol, open it in brat alongside the TextLabs

visualization screen. See the screenshot below for our annotation setup.

 Proceed from the top sentence, for each sentence:

 Try to understand the type of operation\s (if any) in the sentence, and
set accordingly.

 Check that the preloaded relations seem to make sense, and if not-
undo them (simply by taking the source of the relation).

 Prepare the operation's input slots (a , b , c , site) as needed, and then
run the operation.

 Set co-reference between mentions of the same entity, with the earlier
reference as the source and later reference as target. Co-reference will
often span between sentences.

Annotation Instructions 4

💡 A correct annotation should typically lead to a connected
executable action graph, meaning that all participant entities
should be linked together by operation or description relations.
The is not currently the case as the WLP dataset annotations
span within but not across sentence.

💡 To give you an idea of the structures we're trying to capture, this
is an example of a real process graph as designed by a biology
researcher. As can be seen, the routing between inputs and
outputs are key to understanding overall process structure. Each
of the blocks in the diagram below may correspond to a
sentence or more in the WLP protocols dataset.

 New in 1.0.5! During the annotation, after each command, you will be able
to see connectivity scores for your annotations thus far. This is intended to
help you reach a quality annotation which doesn't omit the key events,
connections between them, and reagents (or if you do omit them, you
should use ignore). Note how in the example above, the event graph is
connected. Specifically, the simulator checks the key Reagent and

From: Aquarium Biology Lab Operating System

https://www.notion.so/ronhome/TextLabs-Annotation-Instructions-1ed51a5693b54132b1738ac4510835de#37f5030c45fe4fc5872bfae48ae2bd03
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://www.aquarium.bio/

Annotation Instructions 5

Operation entities to see if they are utilized and connected by the
instructions. The scores should increase as you add relations, and when
you have finished the last sentence they should both be 1.0.

Below is an example showing the score increasing as entities and events
are connected.

 At the end of the annotation, you will receive an automatic report verifying
the annotations. If you have any warnings, please fix them to correct the
annotation. If your scores are 1.0, you won't get any warnings.

Annotation Instructions 6

💡 Note that if you have warnings, it means the annotation should
be fixed. However, if you don't have warnings- it still doesn't
necessarily mean the annotation is perfect- if we knew how to
make perfect annotations, we wouldn't be needing the help of
humans :) So meanwhile, you're the expert, try to make sure that
your annotations make sense even if there were no warnings!

 Saving your work: Note that .txt , .peg and .tln log files will be created
where you specified using the anno_log_dir flag. This is what you should
upload to {google_drive_folder}/{protocol_number} after you finish annotation.

 Mark the protocol as complete under your column on your annotations
spreadsheet- change from "T" (todo) to "F" (finished). Also, please fill in
the time and summary scores as printed at the end of the session.

💡 Only issue commands that appear in the autocomplete prompt.
This is since Inform7 may allow commands that the Python side
doesn't - issuing such a command would put the Python based state-
tracking out of sync.

Notes (Important!)
In a given protocol, multiple entities may have the same name, which can
cause disambiguation problems for the command parser. To disambiguate
mentions and allow the player to refer to a unique id if needed, a short
unique id (of the form s{n}_w{n} , where s , w are the sentence and word
numbers, respectively) is provided in parentheses and can always be used
instead of the string description. Also, if an entity appears more than once,
each mention will be accompanied by the sentence and word location:
s1_w2_seawater_sample and the entity can be referred to by s1_w2 if needed.

Not every WLP relation or entity needs to be used (obviously for those not
supported, but even some actions may be superfluous). In the example
below, the "make dilutions" operation is not a machine executable
command (it's more high level, for the human performing the protocol) and
doesn't translate well into machine executable form. A rule of thumb to

Annotation Instructions 7

help decide is that commands we want to annotate will tend to be simpler
and closer to machine-executable form. If they aren't- consider leaving
them out (see below).

Undoing Actions: Changes since version 1.0.3.

To leave out an unused entity or action E , enter the command ignore
E .

Note that every action you take (except Utility Actions) will be
recorded as an Event for record-keeping purposes. For any action that
creates an Event Operations are Events by default, so no new events
are created by running them), you can undo the effects as before, but
in addition you must also ignore the created Event.

The preloaded relations are not associated with events, so can be
undone as before.

Reference

TextLabs Entity Set
 Objects

Reagent

Device

Location

Seal

 Operations

 Descriptors

Method

Modifier

Setting

Measurement

Annotation Instructions 8

The full table mapping between WLP and TextLabs entities:

Wet Labs

action
amount
concentration
device
generic-measure
location
measure-type
mention
method
misc
modifier
numerical
ph
reagent
seal
size
speed
temperature
time
unit

TextLabs

operation
measurement
measurement
device
measurement
location
measurement
none
method
none
modifier
none
measurement
reagent
seal
measurement
setting
setting
setting
measurement

Action Set

Description Actions
These actions are best thought of as "plugging" a source entity into a target
entity, thus creating a new description relation. A target entity, depending on
its type, has a "bank of sockets" for each relation type it can be connected
with. A source entity has single "plug type" for each relation type. For example,
an operation entity has "sockets" for the setting relation, and the measurement
entity has a setting relation "plug".

 Coreference.

Definition:

Annotation Instructions 9

A link that associates two phrases when those two phrases in a text
refer to the same entity.

Syntax:

 co_ref {reagent, location, device} to {reagent, location, device}

Examples:

Informal Guidelines

When running co_ref a to b , the active entity will remain b , not a !

For consistency, link from the source to the newest mention. In the
example above, a should be the PCR products entity in sentence 10,
and b should be the one in sentence 11.

Unlike in WLP schema, a co-reference link need not be contained in the
span of a sentence, and may cross sentences. In the example below,
clearly PCR products are the same entity in both sentences and should
be consolidated.

 Modifier link

Definition:

Link modifier to entity it is attempting to modify.

Syntax:

 mod_link {modifier} to {reagent, location, device, seal, operation, setting,
measurement}

Examples:

 Settings link

Annotation Instructions 10

Syntax:

 setting_link {setting, measurement} to {operation}

Definition:

Links devices or tools to their settings directly, if there is no action
word associated with making those settings.

Examples:

 Measure link

Syntax:

 set_measure {measurement} to {reagent, location, device, seal}

Definition:

A link that associates the various numerical measures to the entity it is
trying to measure.

Examples:

 Use linking

Syntax:

 use_link {reagent, location, device, seal, method} to {operation}

Definition:

Any entity that the action verb makes ‘use’ of is linked with this relation.
Any entity that
the action verb utilizes to perform the action

Examples:

Annotation Instructions 11

Informal Guidelines

Note that although this operation is similar to the using relation in
WLP, we intend it to work differently. In TextLabs, this relation should
only be used when the entity being used is not affecting the world
state in ways that we track (primarily, composition and location of
entities). An example to demonstrate the difference: in this case, the
entity being used (the stained protein gel) does not affect the state in
ways that we track, it only serves as part of the measurement
procedure (doesn't alter composition or location of entities being
measured).

Also in this case, the use_link relation should be used as the pipetting isn't
altering the operation in any way that we measure:

While in this case the entity being used (sterile BBM) is actually altering the
composition since it's being added to some mixture, so we would use the
site_assign command to express this.

Here as well, we do track the seal

Annotation Instructions 12

6. Part-of link

Syntax:

 assemble {reagent, location, device, seal} to {reagent, location, device, seal}

Definition:

Setting some reagent, location or device entity to be a part of another
reagent, location or device.

Examples:

In the case above, you would perform assemble drop to yeast , and following
that you would take the drop and input it to the Add operation as usual

Informal Guidelines:

The meronym relation doesn't always map to the Part-of link! It often will
also be more appropriate to use the locate action. A rule of thumb is that 2
seperate entities (often one contained in another) should be related by the
locate action, while an entity which is part of another (such as the top of a
container should be related by the assemble action), see below:

https://www.notion.so/ronhome/TextLabs-Annotation-Instructions-1ed51a5693b54132b1738ac4510835de#6fb43628e1484c489209cf5dc6929969

Annotation Instructions 13

💡 Existing Relations: As description relations have only a limited affect
on game state, we automatically generate most of these from the
brat annotations, to reduce workload. Note that they can be
modified, and indeed in some cases should be, to correct/improve
existing annotations (primarily for the using relation).

Operation Actions
Operations in TextLabs can be thought of as functions with types, inputs,
effects and outputs. In this preliminary stage, we support up to 3 Object
entity input arguments and one Site argument.

Input: arguments may be required or optional, depending on operation type.

Type: An operation's type can be set during run time, this must be done before
any inputs are assigned. See below for details regarding types.

Running operations: see below. Effects depend on type of operation, and
include moving, destroying and creating new relations between entities.

Output: After running the operation, outputs may or may not be created, to
see what was created you can check the visualization or perform x
{operation} , which will list all current operation details including
inputs/outputs.

 Input Assignment (similar to Acts-on relation in WLP

Syntax: input_{a, b, c}_assign {reagent, location, device, seal} to
{operation} (depending on the input slot a/b/c you wish to assign).

In most cases, arguments are positional (position sensitive), for
example, in the convert operation, input a is converted into input b.

 Site assigning (similar to site relation in WLP

Syntax: site_assign {reagent, location, device, seal} to {operation}

After running the operation, if a site has been assigned, the operation
outputs will be relocated to the site. Can be required or optional.

For example, consider the following event:

https://www.notion.so/ronhome/Intro-To-TextLabs-Demo-9cf40d51754c4d88ba4e7199a7e37c1b#e110134d6cc743f0974772753a83c3d7
https://www.notion.so/ronhome/Intro-To-TextLabs-Demo-9cf40d51754c4d88ba4e7199a7e37c1b#47b91eb107b7477ea2902fa1a47c4fad

Annotation Instructions 14

The Heat entity is of type temp_type , and since the microwave is an
active participant in terms of location, it should be added as the site of
the Heat operation by the command site_assign microwave to Heat .

 Set operation type

Syntax: op_type {operation} to {op_type}

Must set op type before assigning inputs.

Unless noted otherwise, all slots can be assigned with one of the
following entity types: {reagent, location, device, seal}

Currently supported op_type s:

 convert_type

Description:

Can be used in cases where one entity is converted to another,
typically through some reaction. Input a is the source entity and
will be destroyed as a result of running the operation, b is the
created entity. Represented meaning is "convert a to b ")

Example:

DNA genomes → input a , dsDNA → input b ,

 centrifuge_type

Description:

Centrifuging refers to a special treatment where materials are
reacted by spinning at high speed. This often creates pellets (solid)
and supernatant (liquid) which can play active roles in procedure.
We represent this by optionally allocating input b to the solid and
input c to the liquid.

Example:

Annotation Instructions 15

In this case, input a ← tubes . No solids/liquids are mentioned.

In this case, input a ← microfuge tube , input b ← cells .

In this case, input a ← tubes , input b ← genomic DNA (unfortunately
not possible specifically here since the entity wasn't marked), input
c ← supernatant .

 cover_type

Description:

Represents input slot a being covered/sealed by input b (which is
optional, as could be unmentioned in text)

Slots:

a: {reagent, location, device}

b: {seal}

Example:

Annotation Instructions 16

In this case, input a ← chamber , input b ← parafilm .

 create_type

Description:

Represents an entity at input slot a being created, optionally can
be used with input slots b as arguments representing representing
the entity from which argument a was created (the semantics of
this form are essentially "create a by doing b " or. Note that if
argument b is supplied, it will be co-referenced to a as a result of
running the operation.

Example:
An example with only input a , no b .

An example with input a ← sgRNA , input b ← stock .

 default_type

Description:

This operation doesn't do anything to the inputs and should be
used whenever you want to annotate an operation participating in
the protocol that doesn't fit any of the other types. Obviously, try
to keep use of this to a minimum :)

Example:

Annotation Instructions 17

 destroy_type

Description:

Represents input being discarded, after which it won't be used
anymore in the process. Will affect state by removing the entity
from play.

Example:

 measure_type

Description:

Represents input being measured, doesn't affect state.

Example:

 mix_type

Description:

Represents input being mixed, doesn't affect state.

Example:

 remove_type

Description:

Annotation Instructions 18

Context similar to destroy_type operation, but the remove operation
doesn't affect state- use it in cases

 Where an entity should be removed from a mixture, but not
removed from the game since it will be needed later.

 Where only part of an entity is removed, for example a
certain volume of liquid.

Example:

In the example above, the membrane should be removed and then
used again aftre 3 sentences. (case 1

An example of case two could be a sentence like "Remove 200ml
of liquid from tube."

 temp_type

Description:

Represents input being heated/cooled/incubated/frozen, doesn't
affect state.

Example:

 time_type

Description:

Represents an operation related to time, such as waiting., doesn't
affect state.

Annotation Instructions 19

Example:

Note that the input argument to an operation like Wait argument
may not be directly clear, but it is usually the output of the
previous operation. In the example above, this would be the
mixture to which EtOH was added.

 transfer_type

Description:

Represents inputs being transferred to a new location. This is a
very common operation. All occupied input slots a , b and c will
be transferred to the entity at the site slot.

Example:

 wash_type

Description:

Represents inputs a being washed with input b (b and c are
optional. If c is added, this should be another input being washed
by b).

Example:

Annotation Instructions 20

slides → input a , PBS → input b .

 Operation running

Syntax: op_run {operation}

Must set op type and properly assign inputs before running. Running
the operation will cause the state changes to take effect, according to
action type.

💡 Running operations cannot currently be undone

Implicit Actions
This allows executing actions not explicitly tied to an entity in the text, for
example performing certain Operation Actions directly without needing an
Operation entity.

 Locate

Syntax: locate {reagent, location, device, seal} to {reagent, location,
device, seal}

Move object to desired location, equivalent to what a site setting
would do.

Only use this if no suitable operation entity is available! The
meronym relation will often correspond to this action, as shown in
the example below.

Example:

In this example, we would use the command locate section to Petri
plates

TextLabs Utility Actions
 Take.

Definition:

Annotation Instructions 21

This action is necessary before interacting with any entity, you can
think of it as adding an entity to your "carried inventory". Currently the
semantics for taking an entity involved in a binary relation are a little
tricky - if you take the source entity of the relation, you will take only it
and cancel the relation. If you take the target (socket) side, the relation
will stay intact.

Syntax:

 take {object, descriptor}

💡 All Description actions can be undone simply by take ing the
source of the relation: for example set_measure X to Y
followed by take X

 Examine

Syntax: x {any entity}

Examine an entity, yielding a description of its current state.

Limitations
Natural language is notoriously difficult to capture in symbolic
notation- some protocols or parts thereof may not be possible to
express in the current version of TextLabs. Common examples are
listed below. Please note cases of this while performing annotation
(you can refer to them by protocol number + sentence number), this
will greatly help in improving future versions.

Some relations in WLP aren't yet supported in TextLabs.

Unannotated entities cannot currently be interacted with.

TextLabs operations currently support up to 3 inputs, some WLP
actions may have more- just use as many as you can.

Numerical reasoning is similarly not supported, so currently Numerical
entities are unsupported (we could support them at the basic
descriptor level where they would have no effect on game state).

Annotation Instructions 22

Unsupported examples

Quantifiers such as each .

Conditions:

